subject
Engineering, 25.09.2020 02:01 Arealbot

In an aircraft jet engine at takeoff, the combustion products expand adiabatically in the exhaust nozzle. At entrance to the nozzle, the pressure is 0.180 MPa and the temperature is 1200 K. The kinetic energy of the gas entering the nozzle is very much smaller than the kinetic energy of the gas leaving the nozzle. The specific heat of the exhaust gas varies with temperature approximately as follows: Cp = 0.959 + 1.16 X 10-4T + 3.65 X 10-8T2 , in which the units of cP are kJ/kg · K and Tis the temperature in K. The molecular weight of the exhaust gas is 30. Supposing the expansion to be frictionless (reversible) as well as adiabatic, show how the exhaust velocity and pressure will depend on the exhaust temperature for a series of values: 1100, 1000, and 900 K. At each temperature determine also the speed of sound VyRT'.

ansver
Answers: 2

Another question on Engineering

question
Engineering, 03.07.2019 14:10
Amass of 1.5 kg of air at 120 kpa and 24°c is contained in a gas-tight, frictionless piston-cylinder device. the air is now compressed to a final pressure of 720 kpa. during the process, heat is transferred from the air such that the temperature inside the cylinder remains constant. calculate the boundary work input during this process.
Answers: 2
question
Engineering, 04.07.2019 18:10
The drive force for diffusion is 7 fick's first law can be used to solve the non-steady state diffusion. a)-true b)-false
Answers: 1
question
Engineering, 04.07.2019 18:10
Draw the engineering stress-strain curve for (a) bcc; (b) fcc metals and mark important points.
Answers: 1
question
Engineering, 04.07.2019 18:20
An engine runs on the ideal diesel cycle. the cycle has a compression ratio of 20 and a cutoff ratio of 2. the highest temperature in the cycle is 1200 k. if the heat into the system is 300 kj/kg of working fluid and using variable specific heats determine the work produced per mass of working fluid
Answers: 3
You know the right answer?
In an aircraft jet engine at takeoff, the combustion products expand adiabatically in the exhaust no...
Questions
question
Mathematics, 16.10.2020 14:01
Questions on the website: 13722367