subject
Engineering, 20.07.2020 01:01 zackinator4894

Find the heat flow from the composite wall as shown in figure. Assume one dimensional flow KA=150 W/m°C , KB=25 W/m°C, KC=60 W/m°C , KD=60 W/m°C


Find the heat flow from the composite wall as shown in figure. Assume one dimensional flow KA=150 W

ansver
Answers: 3

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Burgers vector is generally parallel to the dislocation line. a)-true b)-false
Answers: 2
question
Engineering, 04.07.2019 18:10
Aturning operation is performed with following conditions: rake angle of 12°, a feed of 0.35 mm/rev, and a depth of cut of 1.1 mm. the work piece is aluminum alloy 6061 with t6 heat treatment (a16061-t6). the resultant chip thickness was measured to be 1.0 mm. estimate the cutting force, fc. use shear stress of 207 mpa and coefficient of friction on the tool face of 0.6.
Answers: 1
question
Engineering, 04.07.2019 18:20
Avolume of 2.65 m3 of air in a rigid, insulated container fitted with a paddle wheel is initially at 264 k, 5.6 bar. the air receives 432 kj by work from the paddle wheel. assuming the ideal gas model with cv = 0.71 kj/kg • k, determine for the air the amount of entropy produced, in kj/k
Answers: 2
question
Engineering, 04.07.2019 19:10
Arigid tank contains 10 kg of air at 137 kpa (abs) and 21°c. more air is added to the tank until the pressure and temperature rise to 242 kpa (abs) and 32°c, respectively. determine the amount of air added to the tank. [r-0.287 kj/kg k]
Answers: 3
You know the right answer?
Find the heat flow from the composite wall as shown in figure. Assume one dimensional flow KA=150 W/...
Questions
question
Biology, 01.10.2019 09:10
question
Social Studies, 01.10.2019 09:10
Questions on the website: 13722367