subject
Engineering, 07.04.2020 23:41 tonydeanfbg8706

Air at 400kPa, 970 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat transfer from the turbine occurs at an average outer surface temperature of 315 K at the rate of 30 kJ per kg of air flowing. Kinetic and potential energy effects are negligible. For air as an ideal gas with Cp = 1.1 Kj/kg * K, determine

(a) the rate power is developed, in kJ per kg of air flowing, and
(b) the rate of entropy production within the turbine, in kJ/kg per kg of air flowing.

ansver
Answers: 1

Another question on Engineering

question
Engineering, 03.07.2019 14:10
When at a point two solid phase changes to one solid phase on cooling then it is known as a) eutectoid point b) eutectic point c) peritectic point d) peritectoid point
Answers: 3
question
Engineering, 03.07.2019 23:20
Two technicians are discussing the intake air temperature (iat) sensor. technician a says that the computer uses the iat sensor as a backup to the engine coolant temperature (ect) sensor. technician b says that the powertrain control module (pcm) will subtract the calculated amount of fuel if the air measures hot. who is correct
Answers: 3
question
Engineering, 04.07.2019 18:10
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -26°c with a volumetric flow rate of 0.18 m3/s. refrigerant exits at 9 bar, 70°c. changes in kinetic and potential energy from inlet to exit can be ignored. determine the volumetric flow rate at the exit, in m3/s, and the compressor power, in kw.
Answers: 1
question
Engineering, 04.07.2019 18:10
Determine whether or not it is possible to compress air adiabatically from k to 140 kpa and 400 k. what is the entropy change during this process?
Answers: 3
You know the right answer?
Air at 400kPa, 970 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat tr...
Questions
question
Chemistry, 05.07.2019 02:30
question
Mathematics, 05.07.2019 02:30
question
Mathematics, 05.07.2019 02:30
question
Mathematics, 05.07.2019 02:30
Questions on the website: 13722367