subject
Engineering, 11.02.2020 18:24 kimchi204

The temperature distribution across a wall 0.3 m thick at a certain instant of time is T(x) = a + bx + cx2, where T is in degrees Celsius and x is in meters, a = 190 oC, b = -205 oC/m, and c = 20 oC/m2. The wall has a thermal conductivity of 1 W/mK .

ansver
Answers: 2

Another question on Engineering

question
Engineering, 04.07.2019 18:10
An air compression refrigeration system is to have an air pressure of 100 psia in the brine tank and an allowable air temperature increase of 60°f for standard vapor compression cycle temperatures of 77 f entering the expansion cylinder and 14 f entering the compression cylinder, calculate the coefficient of performance a. 2.5 b 3.3 c. 4.0 d. 5.0
Answers: 3
question
Engineering, 04.07.2019 19:20
Acommercial grade cubical freezer, 4 m on a side, has a composite wall consisting of an exterior sheet of 5.0-mm thick plain carbon steel (kst= 60.5 w/m k), an intermediate layer of 100-mm thick polyurethane insulation (kins 0.02 w/m k), and an inner sheet of 5.0- mm thick aluminium alloy (kal polyurethane insulation and both metallic sheets are each characterized by a thermal contact resistance of r 2.5 x 104 m2 k/w. (a) what is the steady-state cooling load that must be maintained by the refrigerator under conditions for which the outer and inner surface temperatures are 25°c and -5°c, respectively? (b) for power saving purpose, which wall material should be increased/reduced in. thickness in order to reduce 50% of the cooling load found in part (a)? redesign the thickness of the proposed material. 177 w/m-k). adhesive interfaces between the q=575.93 w
Answers: 2
question
Engineering, 04.07.2019 19:20
Determine the time of the day and month of the year at which the peak sensible cooling load occurs for a top floor, north-eastern corner room of an office building in durban for the following conditions: floor area: 8 x 8 x 3 m east and north walls: 115 mm face brick (outside), 20 mm air space, 115 mm ordinary brick (inside) with 15 mm plaster roof construction: suspended plasterboard ceiling, 450 mm air space, 150 mm concrete, 75mm screed, waterproofing no heat transfer across other surfaces window area 3x 1,5 m high in north wall only. ordinary glass with venetian blinds. lights and occupants : from 07: 00 to 18: 00 average light density: 25 w/m2 number of occupants : 5 seated, light office work room temperature 24°c
Answers: 3
question
Engineering, 04.07.2019 19:20
Acarnot refrigerator operates in a room in which the temperature is 21°c and of power when operating. if the food compartment of the refrigerator is consumes 3 kw to be maintained at 2°c, determine (a) the coefficient of performance of the cycle and (b) the rate of heat removal from the food compartment. refrigerator cycle that has a higher coefficient of performance than that of the discussed (e) is it possible to develop a carn ot refrigerator, operating between the same temperature limits? explain
Answers: 2
You know the right answer?
The temperature distribution across a wall 0.3 m thick at a certain instant of time is T(x) = a + bx...
Questions
question
Mathematics, 21.04.2020 17:32
question
Geography, 21.04.2020 17:32
Questions on the website: 13722363