subject
Physics, 25.09.2021 07:10 pinapunapula

Helpplz, Helpplz, Plz don’t answer if you don’t know this is really important!!


Helpplz,Helpplz,

Plz don’t answer if you don’t know this is really

ansver
Answers: 3

Another question on Physics

question
Physics, 21.06.2019 19:30
Two thin 80.0- cm rods are oriented at right angles to each other. each rod has one end at the origin of the coordinates, and one of them extends along the x- axis while the other extends along the yaxis. the rod along the x- axis carries a charge of - 15.0 μ c distributed uniformly along its length, and the other rod carries 15.0 μ c uniformly over its length. find the magnitude and direction of the net electrical force that these two rods exert on an electron located at the point (40.0 cm, 40.0 cm). (e
Answers: 3
question
Physics, 21.06.2019 23:00
Follow these directions and answer the questions. 1. set up the ripple tank as in previous investigations. 2. bend the rubber tube to form a "concave mirror" and place in the ripple tank. the water level must be below the top of the hose. 3. generate a few straight pulses with the dowel and observe the reflected waves. do the waves focus (come together) upon reflection? can you locate the place where the waves meet? 4. touch the water surface where the waves converged. what happens to the reflected wave? 5. move your finger twice that distance from the hose (2f = c of c, center of the curvature) and touch the water again. does the image (the reflected wave) appear in the same location (c of c)? you may have to experiment before you find the exact location. sometimes it is hard to visualize with the ripple tank because the waves move so quickly. likewise, it is impossible to "see" light waves because they have such small wavelengths and move at the speed of light. however, both are examples of transverse waves and behave in the same way when a parallel wave fronts hit a curved surface.
Answers: 1
question
Physics, 22.06.2019 11:20
If a rock is thrown upward on the planet mars with a velocity of 12 m/s, its height (in meters) after t seconds is given by h = 12t − 1.86t2. (a) find the velocity of the rock after two seconds. m/s (b) find the velocity of the rock when t = a. 12−3.72a m/s (c) when will the rock hit the surface? (round your answer to one decimal place.) t = s (d) with what velocity will the rock hit the surface? m/s
Answers: 1
question
Physics, 22.06.2019 16:30
Name two kinds of practical electric pumps.
Answers: 2
You know the right answer?
Helpplz, Helpplz, Plz don’t answer if you don’t know this is really important!!
...
Questions
question
Mathematics, 20.04.2021 01:00
question
Mathematics, 20.04.2021 01:00
question
Mathematics, 20.04.2021 01:00
question
History, 20.04.2021 01:00
Questions on the website: 13722367