subject
Physics, 01.12.2020 20:40 hawleyemily

Please help me In this simulation, there is another way to show that induction is happening. Explain why this method may not have been used in the simpler simulation.

ansver
Answers: 1

Another question on Physics

question
Physics, 22.06.2019 05:30
Explain how the energy of rubber ball is tranforned as it roll down a ramp. give evidence that the energy of the og the ball remains the same at all points on the ramp
Answers: 2
question
Physics, 22.06.2019 07:30
Some material consisting of a collection of microscopic objects is kept at a high temperature. a photon detector capable of detecting photon energies from infrared through ultraviolet observes photons emitted with energies of 0.3 ev, 0.5 ev, 0.8 ev, 2.0ev, 2.5ev, and 2.8ev. these are the only photon energies observed. (a) draw and label a possible energy-level diagram for one of the microscopic objects, which has four bound states. on the diagram, indicate the transitions corresponding to the emitted photons. explain briefly. (b) would a spring–mass model be a good model for these microscopic objects? why or why not? (c) the material is now cooled down to a very low temperature, and the photon detector stops detecting photon emissions. next, a beam of light with a continuous range of energies from infrared through ultraviolet shines on the material, and the photon detector observes the beam of light after it passes through the material. what photon energies in this beam of light are observed to be significantly reduced in intensity (“dark absorption lines”)? explain briefly.
Answers: 3
question
Physics, 22.06.2019 17:30
Asilver dollar is dropped from the top of a building that is 1324 feet tall. use the position function below for free-falling objects. s(t) = −16t2 + v0t + s0 (a) determine the position and velocity functions for the coin. s(t) = v(t) = (b) determine the average velocity on the interval [1, 2]. ft/s (c) find the instantaneous velocities when t = 1 second and t = 2 seconds. v(1) = ft/s v(2) = ft/s (d) find the time required for the coin to reach the ground level. (round your answer to three decimal places.) t = s (e) find the velocity of the coin at impact. (round your answer to three decimal places.) ft/s
Answers: 3
question
Physics, 22.06.2019 19:50
Ahuge (essentially infinite) horizontal nonconducting sheet 10.0 cm thick has charge uniformly spread over both faces. the upper face carries +95.0 nc/m2 while the lower face carries -25.0 nc/ m2. what is the magnitude of the electric field at a point within the sheet 2.00 cm below the upper face? (ε0 = 8.85 × 10-12 c2/n · m2)
Answers: 1
You know the right answer?
Please help me In this simulation, there is another way to show that induction is happening. Explain...
Questions
question
Social Studies, 05.05.2020 15:20
question
English, 05.05.2020 15:20
Questions on the website: 13722367