subject
Physics, 06.10.2019 08:30 rockinrhonda19ovewso

During a storm, a tree limb breaks off and comes to rest across a barbed wire fence at a point that is not in the middle between two fence posts. the limb exerts a downward force of 286 n on the wire. the left section of the wire makes an angle of 12.7° relative to the horizontal and sustains a tension of 433 n. find the (a) magnitude and (b) direction (as an angle relative to horizontal) of the tension that the right section of the wire sustains.

ansver
Answers: 1

Another question on Physics

question
Physics, 22.06.2019 00:10
The energy released by a chemical reaction can be measured using a calorimeter. when barium hydroxide octahydrate crystals are reacted with dry ammonium chloride inside of a coffee cup calorimeter, the temperature of the 18.00 g of water in the calorimeter decreases from 30.0°c to 8.0°c. the equation for calculating energy absorbed or released by a reaction is: where q is the energy released or absorbed, m is the mass of water in the calorimeter, cp is the specific heat of water, and δt is the observed temperature change. if the specific heat of liquid water is 4.19 j/g·°c, how much energy was absorbed by the reaction?
Answers: 3
question
Physics, 22.06.2019 04:00
Amodel rocket with a mass of 0.212 kg is launched into the air with an initial speed of 84 m/s. how much kinetic energy will the rocket have at a height of 214 m? assume there is no wind resistance. 634 j 303 j
Answers: 2
question
Physics, 22.06.2019 13:50
The magnitude of the poynting vector of a planar electromagnetic wave has an average value of 0.939 w/m^2 . the wave is incident upon a rectangular area, 1.5 m by 2.0 m, at right angles. how much total electromagnetic energy falls on the area during 1.0 minute?
Answers: 2
question
Physics, 22.06.2019 20:40
Abasketball star covers 2.65 m horizontally in a jump to dunk the ball. his motion through space can be modeled precisely as that of a particle at his center of mass. his center of mass is at elevation 1.02 m when he leaves the floor. it reaches a maximum height of 1.90 m above the floor and is at elevation 0.910 m when he touches down again. (a) determine his time of flight (his "hang time"). (b) determine his horizontal velocity at the instant of takeoff. (c) determine his vertical velocity at the instant of takeoff. (d) determine his takeoff angle. (e) for comparison, determine the hang time of a whitetail deer making a jump with center-of-mass elevations yi = 1.20 m, ymax = 2.45 m, and yf = 0.750 m.
Answers: 1
You know the right answer?
During a storm, a tree limb breaks off and comes to rest across a barbed wire fence at a point that...
Questions
question
English, 04.11.2020 20:40
Questions on the website: 13722363