subject
Physics, 22.06.2019 11:00 tdahna0403

Consider a system to be two train cars traveling toward each other. what is the total momentum of the system before the train cars collide?   kg • what must the total momentum of the system be after the train cars collide?   kg •  

ansver
Answers: 2

Another question on Physics

question
Physics, 22.06.2019 01:30
What is the magnitude of the resultant vector round your answer to the nearest tenth
Answers: 2
question
Physics, 22.06.2019 08:40
An isolated conducting spherical shell carries a positive charge. part a which statement (or statements) about the electric field and the electric potential inside and outside the spherical shell is correct? which statement (or statements) about the electric field and the electric potential inside and outside the spherical shell is correct? electric potential inside the shell is constant and outside the shell is changing as 1/r2 both the electric potential and the electric field does change with r inside and outside the spherical shell electric potential inside and outside the shell is constant, but not zero electric potential inside the shell is constant and outside the shell is equal to zero electric field inside and outside the shell is constant (does not change with the position r), but is not equal to zero electric field inside and outside the shell is changing as 1/r (where r is the distance from the center of the sphere) electric field inside is equal to zero and outside the shell is constant, but not zero electric potential inside the shell is constant and outside the shell is changing as 1/r electric field inside and outside the shell is changing as 1/r2 electric field inside is equal to zero and outside the shell is changing as 1/r2 electric field inside and outside the shell is zero electric field inside is constant and outside the shell is changing as 1/r
Answers: 3
question
Physics, 22.06.2019 19:30
Amass m = 74 kg slides on a frictionless track that has a drop, followed by a loop-the-loop with radius r = 18.4 m and finally a flat straight section at the same height as the center of the loop (18.4 m off the ground). since the mass would not make it around the loop if released from the height of the top of the loop (do you know why? ) it must be released above the top of the loop-the-loop height. (assume the mass never leaves the smooth track at any point on its path.) 1. what is the minimum speed the block must have at the top of the loop to make it around the loop-the-loop without leaving the track? 2. what height above the ground must the mass begin to make it around the loop-the-loop? 3. if the mass has just enough speed to make it around the loop without leaving the track, what will its speed be at the bottom of the loop? 4. if the mass has just enough speed to make it around the loop without leaving the track, what is its speed at the final flat level (18.4 m off the ground)? 5. now a spring with spring constant k = 15600 n/m is used on the final flat surface to stop the mass. how far does the spring compress?
Answers: 3
question
Physics, 22.06.2019 20:40
Ablock of mass m = 2.5 kg is attached to a spring with spring constant k = 740 n/m. it is initially at rest on an inclined plane that is at an angle of theta= 26 with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is uk = 0.17. in the initial position, where the spring is compressed by a distance of d = 0.16 m, the mass is at its lowest position and the spring is compressed the maximum amount. take the initial gravitational energy of the block as zero. the block's initial mechanical energy is 9.472 j.b. if the spring pushes the block up the incline, what distance l in meters will the block travel before coming to rest? the spring remains attached to both the block and the fixed wall throughout its motion.
Answers: 3
You know the right answer?
Consider a system to be two train cars traveling toward each other. what is the total momentum of th...
Questions
question
Social Studies, 14.11.2019 03:31
Questions on the website: 13722360