subject
Engineering, 25.11.2021 14:00 whitethunder05

A refrigeration cycle driven by an electric motor must maintain a computer laboratory at 188C when the outside temperature is 308C The thermal load consists of heat transfers entering through the walls and roof of the laboratory at a rate of 75,000 kJ/h and from the computers, lighting, and occupants at a rate of 15,000 kJ/h. Required:
a. Determine the minimum theoretical power required by the electric motor, in kW, and the corresponding coefficient of performance.
b. If the actual power required by the motor for this duty is 8.3 kW, determine the coefficient of performance.
c. If the given temperature and thermal load data are observed for a total of 100 hours and electricity costs 13 cents per kWh, determine the cost, in $, over that period for each of cases (a) and (b).

ansver
Answers: 1

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Afour cylinder four-stroke in-line engine has a stroke of 160mm, connecting rod length of 150mm, a reciprocating mass of 3kg and its firing order is 1-3-4-2. the spacing between cylinders is 100mm. i. show that the engine is in balance with regard to the primary inertia forces and primary 3. a and secondary inertia couples. li determine the out of balance secondary inertia force ii. propose ways of balancing this out of balance force and discuss the challenges that will arise
Answers: 3
question
Engineering, 04.07.2019 18:10
Adouble-strand no. 60 roller chain is used to transmit power between a 13-tooth driving sprocket rotating at 300 rev/min and a 52-tooth driven sprocket. a) what is the allowable horsepower of this drive? b) estimate the center-to-center distance if the chain length is 82 pitches. c) estimate the torque and bending force on the driving shaft by the chain if the actual horsepower transmitted is 30 percent less than the corrected (allowable) power.
Answers: 3
question
Engineering, 04.07.2019 18:20
Air is compressed isentropically from an initial state of 300 k and 101 kpa to a final temperature of 1000 k. determine the final pressure using the following approaches: (a) approximate analysis (using properties at the average temperature) (b) exact analysis
Answers: 1
question
Engineering, 04.07.2019 18:20
Find the kinematic pressure of 160kpa. for air, r-287 j/ kg k. and hair al viscosity of air at a temperature of 50°c and an absolute (10 points) (b) find the dynamic viscosity of air at 110 °c. sutherland constant for air is 111k
Answers: 3
You know the right answer?
A refrigeration cycle driven by an electric motor must maintain a computer laboratory at 188C when t...
Questions
Questions on the website: 13722363