subject
Engineering, 04.05.2021 22:20 11AnimalLover11

An ocean thermal energy conversion system is being proposed for electric power generation. Such a system is based on the standard power cycle for which the working fluid is evaporated, passed through a turbine, and subsequently condensed. The system is to be used in very special locations for which the oceanic water temperature near the surface is approximately 300 K, while the temperature at reasonable depths is approximately 280 K. The warmer water is used as a heat source to evaporate the working fluid, while the colder water is used as a heat sink for condensation of the fluid. Consider a power plant that is to generate 2 MW of electricity at an efficiency (electric power output per heat input) of 3%. The evaporator is a heat exchanger consisting of a single shell with many tubes executing two passes. If the working fluid is evaporated at its phase change temperature of 290 K, with ocean water entering at 300 K and leaving at 292 K. Required:
a. What is the heat exchanger area required for the evaporator?
b. What flovw rate must be maintained for the water passing through the evaporator?

ansver
Answers: 1

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Awall of 0.5m thickness is to be constructed from a material which has average thermal conductivity of 1.4 w/mk. the wall is to be insulated with a material having an average thermal conductivity of 0.35 w/mk so that heat loss per square meter shall not exceed 1450 w. assume inner wall surface temperature of 1200°c and outer surface temperature of the insulation to be 15°c. calculate the thickness of insulation required.
Answers: 3
question
Engineering, 04.07.2019 19:10
Aplate of dimensions 3 m x 3 m is placed 0.37 mm apart from a fixed plate. the plate requires a force of 2n to move at speed of 45 cm/s. evaluate the viscosity of the fluid in between the plates
Answers: 3
question
Engineering, 04.07.2019 19:20
The power source in a certain welding setup generates 3500w that is transferred to the low carbon steel work with a heat transfer factor of 0.85. the melting factor in the operation is 0.45. a continuous fillet weld is to be made with a cross-sectional area of 23 mm2 determine the travel speed at which the welding can be accomplished.
Answers: 3
question
Engineering, 04.07.2019 19:20
Air enters a horizontal, constant-diameter heating duct operating at steady state at 290 k, 1 bar, with a volumetric flow rate of 0.25 m°/s, and exits at 325 k, 0.95 bar. the flow area is 0.04 m2. assuming the ideal gas model with k = 1.4 for the air, determine (a) the velocity at the inlet and exit, each in m/s, and (c) the rate of heat transfer, in kw flow rate, in kg/s, (b) the mass kg 0.3
Answers: 2
You know the right answer?
An ocean thermal energy conversion system is being proposed for electric power generation. Such a sy...
Questions
question
Chemistry, 15.07.2019 04:00
question
Mathematics, 15.07.2019 04:00
question
Mathematics, 15.07.2019 04:00
question
Mathematics, 15.07.2019 04:00
Questions on the website: 13722363