subject
Engineering, 12.11.2020 19:10 mme58

Water flows in a circular duct. At one section the diameter is 0.3 m, the static pressure is 260 kPa (gage), the velocity is 3 m/s, and the elevation is 10 m above ground level. At a section downstream at ground level, the duct diameter is 0.15 m. Find the gage pressure at the downstream section if frictional effects may be neglected.

ansver
Answers: 1

Another question on Engineering

question
Engineering, 03.07.2019 14:10
The y form of iron is known as: a) ferrite b) cementite c) perlite d) austenite
Answers: 3
question
Engineering, 04.07.2019 18:20
Air is compressed isentropically from an initial state of 300 k and 101 kpa to a final temperature of 1000 k. determine the final pressure using the following approaches: (a) approximate analysis (using properties at the average temperature) (b) exact analysis
Answers: 1
question
Engineering, 04.07.2019 19:10
Asteam is contained in a rigid tank with a volume of 1 m3. initially, the pressure and temperature are 7 bar and 500 oc, respectively. the temperature drops due to cooling process. determine: (1) the temperature at which condensation begins in °c, (2) the fraction of the total mass that has condensed when the pressure decreased to 0.5 bar. (3) the volume in m3 occupied by saturated liquid at the final state?
Answers: 3
question
Engineering, 04.07.2019 19:20
At steady state, air at 200 kpa, 325 k, and mass flow rate of 0.5 kg/s enters an insulated duct having differing inlet and exit cross-sectional areas. the inlet cross-sectional area is 6 cm2. at the duct exit, the pressure of the air is 100 kpa and the velocity is 250 m/s. neglecting potential energy effects and modeling air as an 1.008 kj/kg k, determine ideal gas with constant cp = (a) the velocity of the air at the inlet, in m/s. (b) the temperature of the air at the exit, in k. (c) the exit cross-sectional area, in cm2
Answers: 2
You know the right answer?
Water flows in a circular duct. At one section the diameter is 0.3 m, the static pressure is 260 kPa...
Questions
question
English, 08.07.2019 18:00
question
Mathematics, 08.07.2019 18:00
question
Mathematics, 08.07.2019 18:00
Questions on the website: 13722365