subject
Engineering, 20.10.2020 20:01 Samzell

Consider the open-loop plant: P(S) = 10/(s2 + 2s + 5) and a controller: k(s +1) /(s) = s(s +2) structured in a unity feedback control architecture: = w r u y C(s) P(s) (f) (numerical) Suppose the maximum control effort the actuator can provide is Umar = 0.52. Run a separate iteration, this time beginning with k = 0.01, and incrementing by 0.01 to determine the largest value of k such that the actuator does not exceed its limit. Simulate for 30 seconds during each iteration. With this k, display a 1 x 2 subplot showing the control command u(t) and the output y(t). On the u(t) plot, show the maximum value Umax being less than 0.52. Also display the k value that yields this response. Note: the loop will probably take a long time to run since it's running the simulation each time.
(a) (numerical) Next, run the simulation for 60 seconds, this time introducing a unit step distur- bance w(t) beginning at 30 seconds. With the value of k found in (f), plot the output y(t) and the control command u(t). Is the system capable of rejecting a constant disturbance? E(S) (h) (by hand) As a follow-up to
(b), compute the transfer function T(s) in terms of k, and W(s) note the number of zeros at the origin. Keep this number in mind as we move into the next topic, system TYPE & steady-state error. It can tell us definitively what types of disturbances we can reject and what types of references we can track.

ansver
Answers: 1

Another question on Engineering

question
Engineering, 03.07.2019 14:10
If the thermal strain developed in polyimide film during deposition is given as 0.0044. assume room temperature is kept at 17.3 c, and thermal coefficient of expansion for the film and the substrate are 54 x 10^-6c^-1 and 3.3 x 10^-6c^-1respectively. calculate the deposition temperature.
Answers: 3
question
Engineering, 04.07.2019 18:10
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -26°c with a volumetric flow rate of 0.18 m3/s. refrigerant exits at 9 bar, 70°c. changes in kinetic and potential energy from inlet to exit can be ignored. determine the volumetric flow rate at the exit, in m3/s, and the compressor power, in kw.
Answers: 1
question
Engineering, 04.07.2019 18:10
Aflywheel accelerates for 5 seconds at 2 rad/s2 from a speed of 20 rpm. determine the total number of revolutions of the flywheel during the period of its acceleration. a.5.65 b.8.43 c. 723 d.6.86
Answers: 2
question
Engineering, 04.07.2019 18:10
Air is to be cooled in the evaporator section of a refrigerator by passing it over a bank of 0.8-cm-outer-diameter and 0.4-m-long tubes inside which the refrigerant is evaporating at -20°c. air approaches the tube bank in the normal direction at 0°c and 1 atm with a mean velocity of 4 m/s. the tubes are arranged in-line with longitudinal and transverse pitches of sl- st 1.5 cm. there are 30 rows in the flow direction with 15 tubes in each row. determine (a) the refrigeration capacity of this system and (b) pressure drop across the tube bank. evaluate the air properties at an assumed mean temperature of -5°c and 1 atm. is this a good assumption?
Answers: 1
You know the right answer?
Consider the open-loop plant: P(S) = 10/(s2 + 2s + 5) and a controller: k(s +1) /(s) = s(s +2) stru...
Questions
Questions on the website: 13722363