subject
Engineering, 24.09.2020 02:01 ed100

Conservation of Energy Applied to the Water in a Swimming Pool You are asked to design a heating system for a variety of rectangular swimming pools that are 2m deep, 10 m wide, and the length can vary from 10 m to 25 m. The heating system must be able to raise the specific internal energy of the water by 40 KJ/kg in a 3 hour time period. Consider heat losses to the surroundings to be approximately 1000 W/m2 based off of the top surface area of the water. Take the density of the water to be constant in time as approximately 1000 kg/m3. Determine the required heater size (in kW) as a function of the length of the pool.

ansver
Answers: 2

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Water at 70°f and streams enter the mixing chamber at the same mass flow rate, determine the temperature and the quality of the exiting stream. 0 psia is heated in a chamber by mixing it with saturated water vapor at 20 psia. if both streams enters the mixing chamber at the same mass flow rate, determine the temperature and the quality of the existing system.
Answers: 2
question
Engineering, 04.07.2019 18:10
The flow rate of air through a through a pipe is 0.02 m5/s. a pitot static tube is placed in the flow. the radius of the pitot static tube is 1 mm. assuming the flow to be steady and the air to be at 300k, calculate the difference in total and static pressure if the diameter of the pipe is: (a) d 0.1 m d 0.05 m (c) d 0.01 m
Answers: 2
question
Engineering, 04.07.2019 18:20
Athin walled concentric tube exchanger is used to cool engine oil from 160°c to 60°c with water that is available at 25°c acting as a coolant. the oil and water flow rates are each at 2 kg/s, and the diameter of the inner tube is 0.5 m and the corresponding value of the overall heat transfer coefficient is 250 w/m2. oc. how long must the heat exchanger be to accomplish the desired cooling? cpwater=4.187 kj/kg-candcpengine el=2.035 kj/kg·°c, oil . 120]
Answers: 1
question
Engineering, 04.07.2019 18:20
An open feedwater heater operates at steady state with liquid entering at inlet 1 with t? = 40°c and pl = 1 .2 mpa. water vapor att2-200°c and p2 = 1.2 mpa enters at inlet 2. saturated liquid water exits with a pressure of pa 1.2 mpa. neglect heat transfer with the surroundings and all kinetic and potential energy effects, determine the mass flow rate of steam at inlet 2 if the mass flow rate of liquid water at inlet 1 is given as 2 kg/s.
Answers: 3
You know the right answer?
Conservation of Energy Applied to the Water in a Swimming Pool You are asked to design a heating sys...
Questions
Questions on the website: 13722363