subject
Engineering, 02.09.2020 05:01 allisonpierce1787

A motorcycle starts from rest with an initial acceleration of 3 m/s^2, and the acceleration then changes with the distance s as shown. Determine the velocity v of the motorcycle when s=200 m. At this point, also determine the value of the derivative dv/ds.

ansver
Answers: 2

Another question on Engineering

question
Engineering, 04.07.2019 18:20
Athin walled concentric tube exchanger is used to cool engine oil from 160°c to 60°c with water that is available at 25°c acting as a coolant. the oil and water flow rates are each at 2 kg/s, and the diameter of the inner tube is 0.5 m and the corresponding value of the overall heat transfer coefficient is 250 w/m2. oc. how long must the heat exchanger be to accomplish the desired cooling? cpwater=4.187 kj/kg-candcpengine el=2.035 kj/kg·°c, oil . 120]
Answers: 1
question
Engineering, 04.07.2019 19:10
Afoot bridge is made as a simple deck, 4 m long, with a cross section 2 m (wide) and 20 cm thick, and made of wood. the deck is supported at the two ends. the maximum load allowable on the bridge is 10 tons, provided it is uniformly distributed on the deck. to sense this load, a strain gauge is placed at the center of the bridge and its resistance is monitored. if the sensor has a nominal resistance of 350 s2 and a gauge factor of 3.6, what is the reading of the strain gauge at maximum load? the modulus of elasticity for the wood used in the construction is 10 gpa.
Answers: 2
question
Engineering, 04.07.2019 19:10
With increases in magnification, which of the following occur? a. the field of view decreases. b. the ambient illumination decreases. c. the larger parts can be measured. d. the eyepiece must be raised.
Answers: 1
question
Engineering, 04.07.2019 19:20
At steady state, air at 200 kpa, 325 k, and mass flow rate of 0.5 kg/s enters an insulated duct having differing inlet and exit cross-sectional areas. the inlet cross-sectional area is 6 cm2. at the duct exit, the pressure of the air is 100 kpa and the velocity is 250 m/s. neglecting potential energy effects and modeling air as an 1.008 kj/kg k, determine ideal gas with constant cp = (a) the velocity of the air at the inlet, in m/s. (b) the temperature of the air at the exit, in k. (c) the exit cross-sectional area, in cm2
Answers: 2
You know the right answer?
A motorcycle starts from rest with an initial acceleration of 3 m/s^2, and the acceleration then cha...
Questions
question
Mathematics, 12.12.2020 16:00
question
Mathematics, 12.12.2020 16:00
question
History, 12.12.2020 16:00
Questions on the website: 13722360