subject
Engineering, 20.03.2020 10:07 cayden161

Liquid water enters a valve at 300 kPa and exits at 275 kPa. As water flows through the valve, the change in its temperature, stray heat transfer with the surroundings, and potential energy effects are negli-gible. Operation is at steady state. Modeling the water as incompress-ible with constant rho= 1000 kg/m3, determine the change in kinetic energy per unit mass of water flowing through the valve, in kJ/kg

ansver
Answers: 2

Another question on Engineering

question
Engineering, 04.07.2019 18:10
Items are similar to the free issue items, but their access is limited. (clo5) a)-bin stock items free issue b)-bin stock controlled issue c)-critical or insurance spares d)-rebuildable spares e)-consumables
Answers: 1
question
Engineering, 04.07.2019 18:20
Inspection for bearing condition will include: (clo4) a)-color b)-smell c)-size d)-none of the above
Answers: 1
question
Engineering, 04.07.2019 19:10
The maximum shear stress and maximum flexural stress occur at the same location along a beam subjected to a non-uniform bending load. a)-trune b)- false
Answers: 2
question
Engineering, 04.07.2019 19:20
To design a steam turbine to produce 12,000 hp power. a engineer comsiders using a steady state stean low st 1160fr and engineer considers using a steady state steam flow at 1160°r and 450 psia to drive this steam turbine. the exhaust of the steam is cooled by the lake (vacuum). heat losing to the surroundings is measured at a rate of 555.55 btu/s. (a) sketch the system with the given conditions. (b) neglecting kinetic and potential energy changes from inlet to exit, determine the volumetric flow rate of the steam at the inlet, (ft'/hr). must clearly show unit conversions at crtical terms.
Answers: 1
You know the right answer?
Liquid water enters a valve at 300 kPa and exits at 275 kPa. As water flows through the valve, the c...
Questions
Questions on the website: 13722360