subject
Engineering, 19.03.2020 04:46 rileyeddins1010

The average grain diameter of an aluminum alloy is 14 mu m with a strength of 185 MPa. The same alloy with an average grain diameter of 50 mu m has a strength of 140 MPa. (a) Determine the constants for the Hall-Patch equation for this alloy, (b) How much more should you reduce the grain size if you desired a strength of 220 MPa?

ansver
Answers: 3

Another question on Engineering

question
Engineering, 04.07.2019 19:10
In general, how do thermosetting plastics compare to thermoplastics in mechanical and physical properties?
Answers: 3
question
Engineering, 04.07.2019 19:20
Brief discuss how the presence of dislocations in crystal structures can be an advantage and a disadvantage to engineer and designers.
Answers: 3
question
Engineering, 04.07.2019 19:20
To save energy, the air supply to a 2000 ft office has been shut off overnight and the room temperature has dropped to 40°f. in the morning, the thermostat is reset to 70°f and warm air at 120 f begins to flov in at 200ft'/min. the air is well mixed within the room, and an equal mass flow of air at room temperature (changing with time) is withdrawn through a return duct. the air pressure is nearly 1 atm everywhere. ignoring heat transfer with the surroundings and kinetic and potential energy effects, estimate how long it takes for the room temperature to reach 70°f. plot the room temperature as a function of time.
Answers: 1
question
Engineering, 06.07.2019 03:10
Consider two concentric spheres forming an enclosure with diameters of 12 cm and 18 cm the spheres are maintained at uniform temperatures ti-50°c and t2 = 250°c and have emissivities .45 and .8, respectively. determine the net rate of radiation heat transfer between the two spheres per unit surface area.
Answers: 1
You know the right answer?
The average grain diameter of an aluminum alloy is 14 mu m with a strength of 185 MPa. The same allo...
Questions
question
Mathematics, 18.07.2019 09:00
question
Mathematics, 18.07.2019 09:00
Questions on the website: 13722367