subject
Engineering, 19.02.2020 01:52 joelpimentel

Consider a stream of pure carbon monoxide at 300 bar and 150 K. We would like to liquefy as great a fraction as possible at 1 bar. One suggestion has been to expand this high-pressure fluid across a Joule-Thompson valve and take what liquid is formed. What would be the fraction liquefied for this method of operation? What entropy is generated per mole processed? Use the Peng-Robinson equation. Provide numerical answers. Be sure to specify your reference state. (Assume Cp-29 J/mol-K for a quick calculation.) (ANS. 32% liquefied)

ansver
Answers: 2

Another question on Engineering

question
Engineering, 03.07.2019 14:10
The y form of iron is known as: a) ferrite b) cementite c) perlite d) austenite
Answers: 3
question
Engineering, 04.07.2019 18:10
The mass flow rate of the fluid remains constant in all steady flow process. a)- true b)- false
Answers: 1
question
Engineering, 04.07.2019 18:10
Ajournal bearing has a journal diameter of 3.250 in with a unilateral tolerance of 20.003 in. the bushing bore has a diameter of 3.256 in and a unilateral tolerance of 0.004 in. the bushing is 2.8 in long and supports a 700-lbf load. the journal speed is 900 rev/min. find the minimum oil film thickness and the maximum film pressure for both sae 20 and sae 20w-30 lubricants, for the tightest assembly if the operating film temperature is 160°f. a computer code is appropriate for solving this problem.
Answers: 3
question
Engineering, 04.07.2019 18:10
Which of the following refers to refers to how well the control system responds to sudden changes in the system. a)-transient regulation b)- distributed regulation c)-constant regulation d)-steady-state regulation
Answers: 1
You know the right answer?
Consider a stream of pure carbon monoxide at 300 bar and 150 K. We would like to liquefy as great a...
Questions
question
Mathematics, 11.03.2021 21:00
question
Mathematics, 11.03.2021 21:00
question
Biology, 11.03.2021 21:00
question
Mathematics, 11.03.2021 21:00
question
Mathematics, 11.03.2021 21:00
Questions on the website: 13722363