subject
Engineering, 02.11.2019 04:31 083055

Assume the system in problem 2. below is being excited by pure white noise (random excitation). solve the problem via fourier transforms (equations 12.44 and 12.45 in your textbook). take the fourier transform of the equation. the fourier transform of white noise is constant in the frequency domain. after solving for x(f), take the inverse fourier transform to obtain x(t). this solution is equivalent to another type of solution covered in the course. 2. a vibrating system has the following constants: w=40.6 lb, k=50lb/in., and c=0.40 lb/in. per sec. determine a) the damping factor, b) the natural frequency of damped oscillation, c) derive the frequency response function (frf) and plot it as a bode plot (matlab or excel) d) find the half power bandwidth, predict damping factor via the half power bandwidth.

ansver
Answers: 3

Another question on Engineering

question
Engineering, 04.07.2019 18:20
Inspection for bearing condition will include: (clo4) a)-color b)-smell c)-size d)-none of the above
Answers: 1
question
Engineering, 04.07.2019 18:20
Air is compressed isentropically from an initial state of 300 k and 101 kpa to a final temperature of 1000 k. determine the final pressure using the following approaches: (a) approximate analysis (using properties at the average temperature) (b) exact analysis
Answers: 1
question
Engineering, 04.07.2019 18:20
Acertain flow of air (at stp) has a velocity distribution given by v i (in ft/s). if this flow is going through a 4 ft square area in the yz-plane (centered at the origin), what is the mass flow rate (in lbm/s)?
Answers: 2
question
Engineering, 04.07.2019 18:20
Air flows over a heated plate àt a velocity of 50m/s. the local skin factor coefficient at a point on a plate is 0.004. estimate the local heat transfer coefficient at this point.the following property data for air are given: density = 0.88kg/m3 , viscosity 2.286 x 10 ^-5 kgm/s , k = 0.035w/mk ,cp = 1.001kj/kgk. use colburn reynolds analogy.
Answers: 1
You know the right answer?
Assume the system in problem 2. below is being excited by pure white noise (random excitation). solv...
Questions
question
Mathematics, 18.11.2020 19:30
question
Mathematics, 18.11.2020 19:30
question
Mathematics, 18.11.2020 19:30
question
Mathematics, 18.11.2020 19:30
question
Mathematics, 18.11.2020 19:30
question
Mathematics, 18.11.2020 19:30
question
Mathematics, 18.11.2020 19:30
Questions on the website: 13722366